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Abstract

　 This study evaluates the impact of China’s carbon market trading the reduction of 
carbon dioxide emissions, using Chinese provincial panel data from 1998 to 2017.  The 
study found that (1) Carbon trading contributed to the reduction of carbon dioxide 
emissions in the pilot areas.  However, due to differences in economic development and 
industrial structures, the impact was more pronounced in Tianjin, Shanghai, Hubei, 
and Chongqing. (2) The results show that the carbon trading regression coefficients 
for Beijing and Guangdong are significantly negative using the difference-in-difference 
method.  This indicates that the conclusion of carbon market trading’s role in reducing 
carbon dioxide emissions is more robust. (3) Carbon emissions trading promotes the 
reduction of carbon dioxide emissions through economic incentives and technological 
innovation.  Based on these research conclusions, this article offers the following 
policy recommendations: When expanding the carbon emissions trading pilot to the 
entire country, the unique characteristics of each region should be fully considered, 
and the autonomy of regional pilots in formulating trading rules should be reserved.  
Additionally, the government should expedite the development of supporting policies 
for the operation of the carbon market and promote the optimization of the regional 
industrial structure and the green development of the economy.
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1. Introduction

　 In September 2020, during the general debate of the 75th United Nations General Assembly, 
Chinese President Xi Jinping stated that China will strive to reach the peak of national carbon 
dioxide emissions by 2030 and achieve carbon neutrality by 2060.  As China’s economy enters 
a new phase, optimizing and upgrading the industrial structure and promoting green economic 
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development have become key priorities.  Simultaneously, market-based policy instruments, 
including carbon trading, are expected to play a crucial role in reducing emissions in this new 
era of peak emissions targets.  In 2013, China launched its pilot carbon markets, beginning 
with trading in Shenzhen, Beijing, Shanghai, Hubei, Chongqing, Tianjin, Guangdong, and other 
provinces.  Over the 8 years of pilot programs, nearly 3,000 emission units participated, with 
a total quota volume of 406 million tons Carbon dioxide equivalent, the turnover is about 9.28 
billion yuan (Ministry of Ecology and Environment, 2020).  By the end of 2017, China announced 
plans to establish a unified national carbon market, with the power industry as the first sector 
to launch transactions.  Once operational, the Chinese carbon market is expected to surpass 
the EU ETS as the world’s largest carbon trading market (International Energy Agency, 2020).  
During the pilot period of the carbon market trading, did it effectively contribute to emissions 
reductions? What impact did carbon trading have on the pilot areas? This article reviews the 
carbon market trading pilots from 2013 to 2017 and aims to answer these questions.

2. Literature review

　 In recent years, both domestic and foreign scholars have conducted extensive empirical 
research and analysis on the effectiveness of carbon market transactions.  In the context of EU 
ETS, research has shown that the carbon emission trading system can reduce corporate carbon 
emissions (Brouwers et al., 2018) and sectoral carbon emissions (Borghesi et al., 2015).  In the 
context of pilot trading in China’s carbon market, studies have found that carbon market trading 
policies can reduce carbon emissions (Dong et al., 2019) and carbon emission intensity (Zheng et 
al., 2019), as well as promote the optimization of industrial structure (Song & Kong, 2019; Tan & 
Zhang, 2018) and regional environmental dividends (Huang et al., 2018).
　 In the literature on policy analysis of carbon trading market, the analytical techniques can 
be divided into two categories.  First, the single difference method compares carbon dioxide 
emission before and after the implementation of carbon trading pilot policies (Xiao, 2017; Zheng, 
2014).
　 This method can intuitively compare the carbon dioxide emissions between regions before 
and after the policy is implemented.  However, this method has limitations, as it does not 
sufficiently analyze the factors affecting carbon dioxide emissions.  The single-difference analysis 
cannot account for other factors, such as economic and policy variables, that may influence 
emissions during the carbon trading period.  Second, the difference-in-differences method is 
often used to evaluate pilot transactions (Huang et al., 2018; Zhou et al., 2019; Zhang et al., 2019).  
This method is a widely applied evaluation technique.  In the tradition of the double-difference 
method in the selected control group was compared with the treatment group policy, based on 
a counterfactual framework to evaluate policy changes occur and the factors observed in both 
cases does not occur.  However, the conventional method cannot efficiently capture the differing 
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characteristics of the treatment and control group.  For example, when 24 provinces are used as 
a control group for the pilot areas (expect for the existing pilots), the method cannot effectively 
eliminate the influence of pre-existing policies or geographical difference.
　 Moreover, some studies failed to pass the parallel trend hypothesis test, which undermines 
the robustness of their conclusions.  To address this limitation, the propensity score matching 
double-difference method improves the traditional approach by pre-selecting a reference group 
that closely matches the control group, optimizing the matching process.  However, PSM-DID 
has strict conditions of use, and its matching results can only be optimized with a large sample 
size.  The seven years of trading data from the six pilot regions do not meet the sample size 
requirements for this method.
　 As a quasi-natural experiment, the key challenge is to accurately simulate the condition of 
a policy-affected area in the absence of policy intervention, which is critical for establishing a 
counterfactual framework.  In 2003, Abadie and Gardeazabal introduced the synthetic control 
method, which addresses the limitations mentioned above.  A virtual control group is created 
by screening and synthetic control variables to match the evolution of the policy-affected 
area before the policy is implemented.  Synthetic control analysis has been applied in studies 
of real estate tax pilot (Liu & Fan, 2013; Liu & Zeng, 2018), low-carbon city pilots (Lu, 2017), 
administrative division adjustments (Zhang et al., 2017), and carbon market trading pilots (Liu 
et al., 2019).  When constructing a virtual control group, weights are applied to measure the 
distance between predictors, minimizing the influence of supervisory factors on the evaluation of 
policy effects.  The weight setting also reflect the contribution of provinces that are not part of 
the carbon trading pilots in constructing the counterfactual state.  Based on the above analysis, 
this article will use the synthetic control analysis method to evaluate the effectiveness of China’s 
carbon market trading pilots, using panel data from 2008 to 2017.  We propose the following 
hypothesis regarding the emission reduction effect of the carbon emission trading policy: China’s 
carbon emission trading pilot policy can reduce carbon dioxide emissions in the pilot areas.

3. Model and data

3.1 Synthesis control method
　 This paper applies Abadie’s synthetic control method to analyze the emission reduction 
effects of carbon trading pilots (Abadie & Garbeazadal, 2003; Abadie et al., 2010).  The Analysis 
proceeds with the following steps: (1) selection of predictors and determination of the weight 
values based on the distance between them; (2) fitting the six pilot provinces with their 
corresponding control provinces, synthesized according to the weight; and (3) comparing the 
carbon emissions in the pilot provinces and municipalities with those in the synthetic control 
provinces and cities to evaluate the effects of carbon trading policies.
　 In this study, the dependent variable is carbon dioxide emissions.  In a given set of K＋
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1 region, the carbon emissions panel data for period T αY
it(i∈[1,1＋K]；t∈[1,T]), represents the 

carbon emissions in the ith region after it became part of the carbon trading pilot at time t, and 
αU

it(i∈[1,1＋K]；t∈[1,T]) represents the carbon emissions in the ith region before it became part 
of the trading pilot.  Suppose the policy start time t＝T0，Then, for the period [1, T0], carbon 
emissions in the region will not be affected by the carbon trading policy, meaning at this time 
αY

it＝αU
it.  For the period [T0, T], carbon emissions in the region will be affected by the carbon 

trading policies.  The effect is measured as the difference: effect＝αU
it－αY

it . αU
it is the observable 

data, but αY
it the quantity that needs to be estimated.  According to the factor model proposed by 

Abadie et al., (2010), αY
it the estimation formula is as follows:

 αY
it＝γt＋βtPi＋δtθi＋εit (1)

　 In formula (1), γt represents the time fixed effect, capturing unobservable influences that vary 
over time but are consistent across regions.  Pi is the (K*1) -dimensional covariate, representing 
control variables unaffected by the low-carbon pilot policy, such as regional characteristics and 
baseline economic conditions. βt is the (1*K) -dimensional parameter vector to be estimated. Δt represents the (1*R) dimensional unobservable regional fixed effects, while θI is the (R*1) 
dimensional parameter vector associated with these fixed effects, to be estimated. to be 
estimated. Εit captures unobservable short-term shocks, assumed to have a mean value of zero at 
the regional level, ensuring no systematic bias in the residuals.  In order to determine αY

it, a (N * 
1)-dimensional weight vector W＝(W2,W3,…,Wn＋1) is introduced, where Wk0，K ∈ (2,3, …, n＋1).  
The weight vector W measures the fit between the synthetic control group and the observed 
characteristics of the treatment group, aligning the control region’s carbon dioxide emissions 
with those of the treated region.  For each reference group region, variable weighting values 
can be obtained to:

 
n＋1

Wnαni＝γt＋βt

n＋1

WnPni＋δt
n＋1

Wnθni＋
n＋1

Wnεni∑ ∑ ∑ ∑
n＝2 n＝2 n＝2 n＝2

 (2)

Equation (2) describes how the synthetic control is constructed by assigning weights (Wn) to the 
predictors (αni) of the control group regions.  The goal is to replicate the characteristics of the 
treatment region before the policy intervention.
　 Assuming weight vectors (W2*,W3*,…,W*n＋1) are assigned to each control group region, such 
that they replicate the treated region’s characteristics as closely as possible:

 [
α21 α31⋯ αn＋1 1 ]⋮ ⋱ ⋮
α2T0 α3T0⋯ αn＋1 T0⏟⏟⏟⏟⏟

X0

⏝
⏝⏝

W 2*
W 3*

⏜
⏜⏜ ＝

⏝
⏝⏝

α11
α21

⏜
⏜⏜⋮ ⋮

W*n＋1 αn＋1 T0⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟
W X1

 (3)

　 The predictors for each control region are represented by matrix X0 , while the predictors for 



67Evaluation of the Emission Reduction Effects of China’s Carbon Emissions Trading Pilot Scheme（Ling）

the treated region are represented by vector X1  .  The weight vector W minimizes the distance 
between X0 W and X1   , ensuring a close match.
　 The average of the respective other predictors of Chinese pilot regions referred to as non-
matrix X0 (K * N-dimensional matrix, the subscript 0 indicates “Control Region”) wherein the 
first N ranked Nth respective area values.  We hope that the weight w makes X0w as close to X1 
as possible; that is, after weighting, the characteristics of the composite control area are as close 
as possible to the processing area.  The quadratic form is used to measure the distance between 
the treated region’s predictors (X1) and the weighted predictors of the control regions (X0 W).  
Each predictor in X1   , is assigned a weight in the distance function based on its predictive ability, 
as follows:

 min(X1－X0w)′ V(X1－X0w)
w  (4)

　 The weight vector W satisfies the following conditions: Wn≥0,n＝2,3,… ,n＋1 and ∑n＋1
n＝2 Wn＝1 .  

The matrix V is a (K*K) diagonal matrix that assigns different importance to each predictor 
based on its predictive ability.  Denote the optimal solution of this minimization problem as w*(V).  
The optimal V is selected by minimizing the Mean Squared Prediction Error (MSPE), which 
measures the average squared difference between the predicted emissions (Z0 W*(V)) and the 
actual emissions (Zj) of the treated region during the pre-policy period.  Specifically, Z1 is the 
(19*1)-dimensional column vector, which contains the carbon dioxide emissions of the pilot area 
from 1998 to 2017, and Z0 is the (19*R)-dimensional matrix, where each column corresponds to 
the carbon dioxide of the corresponding region in 1998―2017 Emissions.  The vector Z0 w*(V) is 
used to predict Z1 .  The optimal V minimizes the Mean Squared Prediction Error (MSPE), 
calculated as the average of the squared prediction errors across all pre-policy periods:

 min 1
37 (Z1－Z0 w*(V))′V(Z1－Z0w* (V))

w
 (5)

　 If the synthetic control w* accurately replicates the economic characteristics and the outcome 
variables of the treated area prior the intervention, the following synthetic control estimator can 
be defined (Synthetic Control Estimator):

 μ̂1t＝α1t－
N＋1

W*nαnt,t∈[T0＋1,…,T]∑
N＝2

 (6)

　 In Equation (6), μ̂1t  represents the estimated effect of the intervention at time t.  The term α1t 
is the observed outcome for the treated unit, while ∑N＋1

N＝2 W*nαnt represents the synthetic control 
group’s weighted outcome.  This difference isolates the policy’s effect on the treated area.
　 The study further demonstrates that, under regular conditions, if the synthetic control 
w* fully replicates the characteristics of the treated area and the outcome variables prior to 
the intervention, then as the number of pre-intervention periods (T0) approaches infinity, the 
synthetic control estimator becomes asymptotically unbiased (Abadie et al., 2010).
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3.2 Data
(1) Carbon dioxide calculation and selection of control variables
　 To ensure the synthetic control closely match pilot emissions in 2013 and to enhance the 
reliability of the analysis, this study uses a sample time from 1981 to 2017.  This article examines 
the effect of carbon trading pilots on carbon emissions, so we choose carbon dioxide emissions 
(CAEit) as the explained variable.  Carbon dioxide emissions in this study are calculated based 
on fossil fuel emissions.  The IPCC (2006) provides a method for the calculation, is calculated as 
follows:

 CO2＝
7

Ei∗Si∗Fi∑i＝1
 (7)

In this equation:
CO2: Estimated value of carbon dioxide emissions.
i:  Represents the seven types of fossil fuels: coal, coke, gasoline, kerosene, diesel, fuel oil, 
and natural gas.

Ei: Consumption of fossil fuels.
Si Conversion coefficient to standard coal.
Fi Carbon emissions coefficient for each fuel type.

　 Based on relevant literature evaluating emission reduction effects, this study selects the 
following predictive variables:

(1)  Economic development level (GDPit): Captures the impact of economic development 
on carbon dioxide emissions, measured using GDP.

(2)  Industrial structure (SEIit, THIit): Reflects the regional industrial structure, using the 
share of the secondary and tertiary industries in GDP.

(3)  Urban population (URPOPit): Represents the ratio of the urban population to the total 
population at the end of the year.

(4)  R&D investment case (RDRit): Accounts for regional R&D investment as a percentage 
of GDP.

(2) Data select
　 This article selects 30 provinces (municipalities and autonomous regions)3 in China, using 
panel data from 1998 to 2017.  The panel data is used as the initial sample.  The seven carbon 
trading pilot provinces (municipalities directly under the central government, collectively 
referred to as provinces from now on) were established in China in 2013, including Beijing, 
Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen, are used as the experimental 

3 Based on the availability of data, the research sample of this article is set to exclude 30 provinces, 
municipalities and autonomous regions of Tibet, Hong Kong, Macau, and Taiwan.
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group.  The remaining non-pilot provinces are used as the control group.  Since Shenzhen is not 
a province or municipality directly under the central government, it is merged with Guangdong 
Province for the analysis.  The original data are sourced from statistical yearbooks and official 
websites published by the National Bureau of Statistics of China, covering the provinces, 
municipalities, and autonomous regions.

4. Evaluation of the policy effects of carbon trading pilots on carbon dioxide reduction

4.1 Weight of synthetic control area
　 This study constructs synthetic control regions for the six pilot trading regions using 
predictors such as GDP, industrial structure, R&D investment intensity, urban population, and 
carbon dioxide emission data from 1998 to 2012.  The weights are selected based on the criterion 
of minimize the mean squared error (MSE) between the carbon dioxide emissions of the pilot 
provinces and their corresponding synthetic control regions before the start of carbon trading.  
A higher weight assigned to a province in the control group indicates greater similarity in 
characteristics to the corresponding pilot province (Table 1).  In the synthetic control analysis, 
Heilongjiang Province contributes the highest weight to the synthetic regions for Beijing, 
Shanghai, and Chongqing regions.  Similarly, Liaoning Province contributes the largest weight to 
the synthetic regions for Hubei and Guangdong regions, while Gansu Province has the highest 

Table 1　The weight of the remaining provinces that constitute the synthetic control province

Beijing Tianjin Shanghai Hubei Guangdong Chongqing

Hebei
Shanxi
Inner Mongolia
Liaoning
Jilin
Heilongjiang
Jiangsu
Zhejiang
Anhui
Fujian
Jiangxi
Shandong
Henan
Hunan
Guangxi
Hainan
Sichuan
Guizhou
Yunnan
Shaanxi
Gansu
Qinghai
Ningxia
Xinjiang

0
0
0
0
0
0.557
0
0
0
0
0
0
0
0
0
0.443
0
0
0
0
0
0
0
0

0
0
0.013
0
0.029
0.227
0
0
0
0
0.158
0
0
0
0
0
0
0
0
0.001
0.411
0.162
0
0

0
0
0
0.289
0
0.671
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0.116
0
0.492
0.19
0.044
0
0
0
0
0.005
0
0
0
0
0
0.001
0.143
0
0
0
0.009
0
0

0.229
0
0
0.639
0
0
0
0
0
0
0
0.132
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0.244
0.391
0
0
0
0
0.19
0
0
0
0
0
0
0
0
0
0
0.175
0
0
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weight in the synthetic region for Tianjin.
　 Table 1 presents the weights assigned to provinces in the control group for constructing 
synthetic control regions corresponding to the pilot regions (Beijing, Tianjin, Shanghai, Hubei, 
Guangdong, and Chongqing).  A higher weight indicates greater similarity in characteristics 
between the control province and the pilot region, based on predictors such as GDP, industrial 
structure, urban population, and R&D investment.  Heilongjiang Province plays a significant role 
in constructing the synthetic control regions for Beijing (weight: 0.557), Shanghai (weight: 0.671), 
and Chongqing (weight: 0.391), indicating high similarity in characteristics to these pilot regions.  
Liaoning Province contributes substantially to the synthetic control regions for Hubei (weight: 
0.492) and Guangdong (weight: 0.639), reflecting its close alignment with these regions in terms 
of predictors.  Gansu Province holds the largest weight (0.411) for the Tianjin synthetic control 
region, signifying its significant similarity to Tianjin.

4.2 Emission reduction effects of carbon trading pilots
　 The evolution trends of carbon emissions for the pilot regions and their corresponding 
synthetic control regions are shown in Figure 1.  The vertical dotted line in Fig. 1 marks 
the start of carbon trading pilot polies in 2013.  The period to the right of the dotted line 
represents the post-implementation phase of the carbon trading pilot.  In Figure 1, the solid 
curve represents the actual carbon dioxide emissions of the pilot provinces, while the dotted 
curve shows the emissions of their synthetic control regions.  The results indicate that all 
pilot regions, except Beijing, exhibit good features matching between actual and synthetic 
emissions before the implementation of the pilot.  In Beijing, a significant drop in carbon dioxide 
emissions is observed starting in 2011.  This can be attributed to its unique industrial structure, 
where more than 70% of GDP is derived from the tertiary sector.  Additionally, Beijing’s 
special administrative and economic status makes it challenging to achieve a perfect fit using 
the weighting of other provinces and cities.  In Guangdong, carbon dioxide emissions and the 
corresponding synthetic control region began to diverge in 2011.  However, by 2016, the two 
trends nearly converged.  The specific reasons for this convergence will be analyzed in a later 
chapter.  The remaining four pilot regions (Tianjin, Shanghai, Hubei, and Chongqing) met the 
required criteria.  Prior to the implementation of the carbon trading mechanism, actual carbon 
dioxide emissions closely matched those of the synthetic control regions, demonstrating the 
effectiveness of the synthetic control method in fitting the actual emissions.  As a result, further 
analysis was conducted on Tianjin, Shanghai, Hubei, and Chongqing to investigate the impact of 
the carbon trading mechanism.
　 In Beijing and Guangdong, the emission curve for the pilot regions began to diverge from 
their synthetic control regions between 2011 and 2013.  Although the carbon trading pilots 
officially launched in 2013, the National Development and Reform Commission issued a notice in 
October 2011 to approve the initiation of carbon trading in seven pilot provinces and cities.  This 
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early preparation encouraged enterprises in the pilot areas to begin reducing emission before 
the official implementation of the policy.  Following the divergence, the carbon dioxide emissions 
in the pilot regions consistently fell below the emission of their corresponding synthetic control 
regions.  Although the magnitude of the reduction varied across regions, the carbon dioxide 
emissions in the four pilot regions remained lower than those in the synthetic control regions, 
demonstrating the effectiveness of the carbon trading pilot policy in reducing emissions.

4.3 Validity check of the carbon trading pilot policy
　 This section examines the validity of the carbon trading pilot policy using a placebo test and 
evaluates the effectiveness of the synthetic control method (Abadie et al., 2010).

Fig. 1　Carbon dioxide emissions (Mt) of each pilot area and its corresponding combined control province
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(1) Placebo test
　 The placebo test aims to determine whether the observed reductions in carbon dioxide 
emissions in the four pilot regions are due to accidental common factors rather than the carbon 
trading pilot policy.  To rule out this possibility, a placebo test was conducted to analyze the 
effectiveness of the carbon trading policy.
　 The method involves selecting a province that was not a carbon trading pilot during the 
sample period and assuming it underwent the same policy intervention in the same year as the 
pilot areas.  Using the synthetic control method, we then compare the observed differences in 
emissions for the placebo region with those of pilot regions.  If the difference in emissions for the 
placebo region are smaller than those observed for the pilot regions, the policy result is valid.  
Otherwise, they are invalid.  The placebo regions were selected based on the provinces with the 
highest weights in the synthetic control provinces for each region, as shown in Table 1.  These 
include Tianjin-Gansu, Shanghai-Heilongjiang, Hubei-Liaoning, Chongqing-Heilongjiang.  Due to 
the significant weights assigned to Heilongjiang Province for Beijing, Shanghai, and Chongqing, 
it was selected as the placebo region for these areas.  For clarity, we label them as Shanghai-
Heilongjiang 2 and Chongqing-Heilongjiang 3.  As Liaoning did not have a satisfactory synthetic 
match for Hubei before 2013, Guizhou, which had the second-highest weight for Hubei, was 
selected as the placebo region.
　 Figure 2 illustrates the actual and synthetic carbon dioxide emissions (in megatonnes, Mt) 

Fig. 2　 Carbon dioxide emissions (Mt) of placebo regions and their corresponding synthetic control provinces
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for three placebo regions: Gansu, Heilongjiang, and Guizhou.  The X-axis represents the timeline 
from 2000 to 2020, while the Y-axis shows carbon dioxide emissions.  Solid lines indicate actual 
emissions in the placebo regions, and dashed lines represent emissions for their synthetic control 
regions.  The vertical dotted line marks the introduction of the carbon trading pilot policy in 
2013.
　 Before 2013, the solid and dashed lines for each placebo region align closely, suggesting a 
good pre-treatment fit between the actual and synthetic emissions.  After 2013, the solid lines 
remain above the dashed lines, indicating that the placebo regions did not experience significant 
reductions in emissions.  This result contrasts with the observed trends in pilot regions, where 
emissions consistently fell below the synthetic control regions, validating the robustness of the 
policy’s effects.

(2) Sorting test
　 To further evaluate the statistical significance of the estimated policy effect, this study 
employs a ranking method, similar to a rank test, as outlined by Abadie et al., (2010).  The 
method involves randomly selecting non-pilot provinces and assuming they were subject to 
the policy treatment effect in 2013.  Using the synthetic control method, this study constructs 
synthetic carbon dioxide emission values to calculate a series of random policy effects, defined as 
the difference between the actual and synthetic values.  The policy effect of the pilot provinces 
is then compared to the distribution of random errors.  If the policy effect for the pilot provinces 
is significantly larger (in absolute value) than those for the randomly selected provinces, the 
result is deemed statistically significant.  This study uses the Mean Square Prediction Error 
(MSPE) to measure the differences in carbon trading effects between the control pilot province 
its synthesis counterpart.  The MSPE formula is defined as follows:

 MSPE＝ 1
T0

T0

(α1t－
k＋1

wk∗αkt)2∑ ∑
t＝1 k＝2

 (8)

　 Where:
T0 : Pre-policy period,
α1t : Actual emissions in the pilot region at time t1 ,
wk : Weight assigned to the Kth  control region,
αkt : Emissions in the Kth  control region at time t.

　 Non-pilot provinces are excluded from the ranking test under the following conditions:
1.   Provinces with poor pre-treatment fit, where differences between actual and synthetic 

values in the post-treatment period may arise from fitting errors rather than policy 
effects.  Provinces with an MSPE greater than twice that of the pilot provinces are 
excluded from the analysis (Abadie et al., 2010).

2.   Only provinces with positive weights during the construction of synthetic provinces, and 
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no more than two provinces with zero weights, are selected (Tan & Zhang, 2018).  As 
Beijing and Guangdong did not achieve a good pre-treatment fit with their synthetic 
provinces, the effectiveness test was conducted only for four regions: Tianjin, Shanghai, 
Hubei, and Chongqing.  The solid black line in the figure indicates the pilot area, and the 
solid gray line indicates the non-pilot region.

　 The sorting test results further validate the robustness of the carbon trading pilot policy’s 
emission reduction effects, demonstrating that the observed reductions are statistically 
significant and not attributable to random factors.
　 As shown in the figures, the differences between the actual carbon dioxide emissions and 
the interpolated values for the four regions are notably larger compared to the policy effects 
observed in the non-pilot provinces within the respective control groups.  This indicates that 
the pilot provinces exhibit significantly different trends in emission reductions compared to the 
non-pilot provinces.  The distinct differences in synthesis errors between the pilot and non-pilot 
provinces validate the significant policy effects of carbon trading pilots.

Fig. 3　Effectiveness analysis of Tianjin

Fig. 4　Effectiveness analysis of Shanghai
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4.4 Analysis of the policy effects of Beijing and Guangdong
　 This section employs the Synthetic Control Method-Difference-in-Differences (SCM-DID) 
approach to evaluate the robustness of carbon emission reduction effects in the Beijing and 
Guangdong pilot regions.  Using the synthetic control method, Beijing and Guangdong are 
analyzed as pilot regions to compare their emission trends against those of non-pilot regions.  
A dual analysis framework is employed to determine whether the carbon trading policy has 
effectively reduced emissions in these regions.  The analysis is conducted using a two-way fixed 
effects model, which accounts for both temporal and regional variations in emissions:

 Emissionit＝β0＋β1Dit＋β2Tit＋β3(Dit∗Tit)＋εit (9)

　 Where:
Emissionit : Carbon dioxide emissions in region i at time t,
Dit :  Binary variable indicating whether region i is part of the pilot program (1 for pilot 

regions, 0 otherwise),

Fig. 5　Effectiveness analysis of Hubei

Fig. 6　Effectiveness analysis of Chongqing
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Tit : Binary variable for the post-treatment period (1 for years after 2013, 0 otherwise),
Dit*Tit :  Interaction term measuring the combined effect of the pilot program and the 

post-treatment period,
εit : Error term capturing unobserved factors,
β0, β1, β2, β3:  Coefficients to be estimated.

　 This model allows for the isolation of the causal effects of carbon trading on emissions 
by controlling for region-specific characteristics (Dit ) and time-specific trends (Tit), while the 
interaction term (Dit*Tit ) captures the policy effect.
　 The SCM-DID method combines the strengths of the synthetic control method in constructing 
valid counterfactuals with the Difference-in-Differences approach, which accounts for temporal 
variations and unobserved heterogeneity, ensuring robust policy evaluation.  The analysis of 
Beijing and Guangdong provides critical insights into the differential impacts of carbon trading 
policies, given their unique industrial and administrative structures.
　 As shown in Figure 1, the synthesized provinces provide a good pre-treatment fit for 
Guangdong Province but not for Beijing.  To address this, the analysis employs a difference-
in-differences (DID) approach for both regions, followed by a parallel trend test for Beijing 
to evaluate the comparability of pre-policy trends.  The study first applies a difference-in-
differences analysis to evaluate the policy’s impact in both regions.  Additionally, a parallel trend 
test is conducted for Beijing to verify whether pre-policy emission trends were comparable 
between Beijing and its synthetic counterpart.  Passing the parallel trend test confirms the 
validity of the DID analysis, ensuring that the observed effects are attributable to the policy 
shock.  The result of the difference-in-difference analysis can reflect the actual effects of policy 
shocks.  The analysis results of Guangdong and Beijing are as follows:
　 The analysis results indicate that the coefficient of the interaction term is negative for both 
Beijing and Guangdong.  For Beijing, the coefficient is significantly negative at the 0.01 level, 
suggesting a strong emission reduction effect.  In contrast, the coefficient for Guangdong is 

Table 2　 Double difference analysis results of Beijing 
and Guangdong Province

Beijing Guangdong

_cons

N
adj. R-sq

－0
(－2
－0
(－3

0
(4
4

(65
40
0

.538**

.762)

.346**

.553)

.574***

.166)

.484***

.117)

.546

－0
(－0
－0
(－0

0
(4
5

(53
40
0

.030

.206)

.015

.102)

.530***

.944)

.751***

.792)

.254

Note:  t statistics in parentheses *p<0.05, **p<0.01, ***p<0.001
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negative but not statistically significant.  At the same time, the parallel trend test for Beijing 
(Figure 7) shows that prior to the implementation of the pilot policy in 2013, the estimated 
emissions remained relatively stable.  However, a significant reduction in emissions is observed 
post―2013, with levels remaining consistently low.  This indicates that Beijing passed the parallel 
trend test, validating the DID analysis and confirming that the carbon trading pilot policy 
contributed to significant emission reductions.  We can conclude that Beijing has passed the 
parallel trend test; that is, the analysis mentioned above is credible, and the carbon trading pilot 
policy has promoted Beijing’s carbon dioxide emission reduction.
　 The multi-period dynamic effects analysis for Guangdong Province (Figure 8) reveals a 
noticeable emission reduction effect beginning in 2011, even before the formal implementation 
of the pilot policy.  However, the magnitude of the negative effect diminishes after 2014, 
reaching its lowest point in 2016.  Guangdong Province has made initial progress in optimizing 
its industrial structure, with shifts in the proportions of the primary, secondary, and tertiary 
sectors in its GDP.  From the industry perspective’s internal structure, the Guangdong 
production industry level is still low; significantly, the modern service industry lags behind 

Fig. 7　Multi-period dynamic effects in Beijing

Fig. 8　Multi-period dynamic effects in Guangdong
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producer services development, the proportion is still small high-tech manufacturing (Guangdong 
Academy of Social Sciences, 2017).  In eastern and western Guangdong, the deployment of 
large-scale steel and petrochemical projects since 2013 has increased the presence of pollution-
intensive industries.  This expansion has exacerbated the regional environmental load, hindering 
effective reductions in carbon dioxide emissions.

5. Results and policy recommendations

5.1 Results
　 This study uses a synthetic control analysis based on annual panel data from 1998 to 2017 
to evaluate the carbon trading pilot policies’ effects on carbon dioxide emissions in Chinese 
provinces.  The key findings are as follows:

(1)  Effectiveness of carbon trading varies by region: The carbon trading policies 
demonstrated clear emission reduction effects in four pilot regions, including Chongqing.  
These regions showed substantial progress in reducing carbon dioxide emissions because 
of the policy interventions.  However, in Guangdong Province, the synthesis performance 
in the early stages of the pilot implementation was poor, making it challenging to 
comprehensively evaluate and analyze the effectiveness of emission reduction efforts.  
Throughout the analysis period, Guangdong failed to exhibit significant emission 
reduction effects, highlighting the limitations of the policy’s impact in this region.

(2)  Contrasting results between Beijing and Guangdong: A deeper analysis using the 
double difference method revealed contrasting results between Beijing and Guangdong.  
In Beijing, the carbon trading policy significantly reduced emissions, with the cross-
multiplication term showing statistical significance at the 0.01 level.  Additionally, Beijing 
passed the parallel trend test, affirming the robustness of its emission reduction effects.  
This finding underscores the effectiveness of the carbon trading policy in Beijing, 
where policy implementation and pre-policy comparability aligned well.  In contrast, 
Guangdong’s cross-multiplication term was negative but not statistically significant.  This 
suggests that while there may have been some reduction in emissions, the impact of the 
carbon trading policy in Guangdong was not as strong or consistent as in Beijing.

(3)  Barriers in industrial transition: The industrial structure in Guangdong Province poses 
significant challenges to achieving meaningful emission reductions.  The province has 
made initial progress in optimizing its industrial structure, transitioning towards a “three-
two-one” pattern where the tertiary sector is growing in importance.  However, the 
internal structure remains underdeveloped, with the modern service sector, particularly 
producer services, lagging behind.  The proportion of high-tech manufacturing in 
Guangdong’s economy remains small, limiting its ability to transition towards less carbon-
intensive industries.  Since 2013, eastern and western Guangdong have witnessed 
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the intensive deployment of pollution-intensive industries, such as large steel and 
petrochemical projects.  Instead of reducing the environmental burden, this expansion 
has increased the regional environmental load, hindering effective carbon dioxide 
emission reductions.

5.2 Policy recommendations
　 This study underscores the value of using synthetic control analysis, which reduces biases in 
selecting control areas and mitigates errors caused by individual differences among pilot regions.  
Based on the findings, the following targeted recommendations are proposed to strengthen 
carbon trading policies and promote sustainable emission reductions:

(1)  Prioritize key regions for focused impact: Municipalities like Beijing, Tianjin, Shanghai, 
and Chongqing played a pivotal role in the pilot phase due to their administrative and 
economic significance.  Heavy industrial provinces such as Hubei and Guangdong were 
integral for addressing high emissions, while Shenzhen capitalized on its openness to 
trade and advanced financial markets, fostering an effective carbon market integrated 
with securities trading.

(2)  Adopt region-specific strategies: Recognizing the variations in industrial structures, 
economic development levels, and emission profiles across regions, policymakers should 
implement tailored strategies.  This includes leveraging regional strengths while 
addressing unique challenges to maximize the effectiveness of carbon trading policies.

(3)  Expand the national carbon market through phased trials: A gradual approach, starting 
with the power industry, will allow policymakers to accumulate experience before 
extending carbon trading policies to other industries and regions.  This step-by-step 
expansion ensures smooth integration and policy effectiveness.

(4)  Accelerate structural reforms in high-emission regions: In provinces like Guangdong, 
where pollution-intensive industries dominate, transitioning away from these sectors is 
essential.  Emphasis should be placed on developing modern service industries and high-
tech manufacturing, particularly in eastern and western Guangdong, to optimize the 
industrial structure and achieve sustainable reductions.

(5)  Integrate financial markets to enhance carbon trading efficiency: Leveraging Shenzhen’s 
advanced financial market can increase trading activity and liquidity.  Establishing 
strong connections between carbon markets and securities trading platforms will further 
improve market efficiency and transparency.

(6)  Maintain a long-term perspective for carbon neutrality: To meet China’s 2060 carbon 
neutrality goals, carbon trading policies should be gradually expanded and continuously 
refined.  A long-term vision will ensure the achievement of domestic emission targets 
while contributing significantly to global climate goals.

These recommendations aim to create a more robust, equitable, and effective carbon trading 
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framework, balancing regional priorities with national climate commitments.

5.3 Conclusion
　 The findings of this study underscore the need for a targeted and phased approach to carbon 
trading policy implementation.  While regions like Beijing demonstrated strong policy effects, 
challenges in Guangdong Province highlight the importance of aligning industrial structure 
reforms with emission reduction strategies.  By leveraging regional strengths, tailoring policies, 
and promoting phased market expansion, China can optimize its carbon trading system and 
contribute meaningfully to global climate goals.
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