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Abstract

Recently, Noguchi （2021） published a paper on the so-called essential stability of the -core 

solutions of games with incomplete information in the sense of Milgrom and Weber, based on a 

stability concept introduced by Fort （1950）.  In the proof of the main theorem in Noguchi 

（2021）, a part requires a family of probability measures in a compact set to be uniformly and 

absolutely continuous with respect to some probability measure.  To verify this fact, Noguchi 

（2021） utilized a related result in Gänssler （1971）.  The present paper aims to examine 

Gänssler’s proof and construct a self-contained simpler proof, taking advantage of dealing only 

with probability measures instead of a more general class of measures in Gänssler （1971）.
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1　Introduction

The -core is a solution concept for cooperative game theory, initiated by Aumann （1961）.  It 
was investigated in a general framework by Kajii （1992） and in the context of incomplete 
information by Askoura et al.  （2013） and Noguchi （2014, 2018）.
　 Recently, Noguchi （2021） published a paper on the so-called essential stability of the -core 
solutions of games with incomplete information in the sense of Milgrom and Weber, based on the 
stability concept introduced by Fort （1950） to investigate the stability of the fixed points of 
continuous mappings.  In the sequel, we refer to games with incomplete information simply as 
games.  There are n players, and a typical player is denoted by i∈ N＝ 1, …, n .  Each player 
i is endowed with a set of private information （called a type） Ti and a set of available actions Ai .  
The payoff to player i , given a type combination t＝（t1, …, tn）∈ T :＝T1×…×Tn and an action 
combination a＝（a1, …, an）∈ A :＝ A1 ×…× An , is determined by a payoff function ui（t, a）, which 
incorporates both information and action externalities, that is, the payoff to player i depends on 
types and actions of all players.  We assume player i ’s type space to be a measurable space 
（ ） and action space to be a compact metric space Ai .  We also assume that the players 
make decisions in the ex-ante stage, that is, before Nature reveals individual types to the players, 
and hence none of the players knows his or her type with certainty.  This uncertainty is 
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represented by a probability measure （called an information structure） P∈  （ ）, where 
 denotes the product σ-algebra , where for a measurable space （ ）,  （ ） 
denotes the space of probability measures.  However, we often omit the σ-algebra  for brevity 
whenever confusion is unlikely.
　 A strategy available to player i is transition probability , where （Ai） 
denotes the Borel algebra of Ai .  A strategy μi assigns a mixed action μi （ti） to each possible 
type ti∈Ti , and player i enjoys the ex-ante expected payoff Ei（μ）, given a strategy profile μ＝
（μ1, …, μn）, where

with Pi being the i -th marginal measure of P.  We specify a game by an information structure 
P and a profile of payoff functions u＝（u1, …, un）.  In this specification of games, the parameter 
space will be  （ ）, where  is a space of profiles of integrable payoff functions, and 

 （ ） is a space of information structures.  Thus in this view, every conceivable game that 
can occur in the world is represented by a point （u, P） ∈  （ ）.
　 An -core strategy profile is defined as a strategy profile μ＝（μ1, …, μn） with which no 
coalition S⊂N can be unilaterally and strictly better off, given every conceivable retaliatory 
reaction from the outsiders.  The -core of game （u, P） is defined as the set of all -core strategy 
profiles and denoted by （u, P）.  For a technical reason, we identify each strategy profile 
μ＝（μ1, …, μn） with μ P :＝ （μ1  P1, μ2  P2, …, μn  Pn） ∈ （Ti×Ai）, where 
μi  Pi denotes the product measure on Ti × Ai defined by , 
where  and .
　 （u, P） may be empty for some （u, P）.  Noguchi （2014, 2018） proved an -core non-emptiness 
theorem for finite games with incomplete information.  We restrict the class of games （u, P） to 
be considered as those satisfying the conditions in the above non-emptiness theorem.  Each ui（t, a） 
is measurable in t , continuous, concave in a , and bounded.  In addition, each information structure 
P has the form P ＝  for some nonnegative measurable function k on T, such that 
the i-th marginal measure of P equals  and is nonatomic, where  （ ）.  For each 

, we use the shorthand notation  （ ）.  
We specify the information structure by a pair （k, ）, also called an information structure for 
brevity, and denote the set of information structures in the latter sense by .  Let us keep in 
mind that we only consider the information structures of the form P ＝  and that a strategy 
profile μ  P admits the expression .
　 Generally, a solution in the solution set of a game, such as , is stable if the solution 
does not abruptly sift as the game infinitesimally fluctuates around the original one.  A game in 
parameter space, such as , is said to be stable if all its solutions are stable, and it is said to 
be essentially stable if generic games are stable.



3Stability of Games with Incomplete Information and a Theorem of Gänssler （NOGUCHI）

　 Fort （1951） argued that the lower semi-continuity for correspondences provided a suitable 
notion to describe stability.  In light of the following celebrated theorem by Fort （1951）, Noguchi 
（2021） found suitable topologies on relevant probability spaces and pursued a set of conditions 
for the -core correspondence  to be essentially lower semi-continuous.
　 In the proof of the main theorem in Noguchi （2021）, a part requires a family of probability 
measures in a compact set to be uniformly and absolutely continuous with respect to some 
probability measure.  To verify this fact, a related result in Gänssler （1971）, the proof of which 
is sketchy, was utilized.  The primary purpose of this paper is to revisit and examine Gänssler’s 
proof to construct a self-contained simpler proof, taking advantage of dealing only with 
probability measures instead of a more general class of measures as in Gänssler （1971）.
　 The present paper is organized as follows.  Section 1 introduces Milgrom-and-Weber-type 
games with incomplete information and a notion of stability applicable to them, posing the 
problem addressed herein.  Section 2 provides an accurate description of the problem in precise 
mathematical language.  Section 3 gives a self-contained proof of a theorem of Gänssler （1971） 
utilized by Noguchi （2021）.  Section 4 discusses a further development, which partially 
contributes to resolving the problem identified by Noguchi （2021）.

2　A precise problem statement

In this section, we describe how Noguchi （2021） used Gänssler’s （1971） theorem.  First, we state 
Fort’s （1951） theorem, a fundamental theorem that allows us to discuss the stability of many 
game situations of different kinds.

Theorem 1 （Fort, 1951） Let X be a topological space and Y a metric space.  Suppose that a 
correspondence  : X → Y is nonempty, compact valued, and upper semi-continuous.  Then, 
there exists a countable intersection Q of open dense subsets of X such that  is lower semi-
continuous at every point in Q.  If X is a complete metric space, then Q will be a dense residual 
of X.

　 In our setup, X corresponds to , and Y to range  （Ti×Ai）.  We introduce 
the following two closely related topologies: the s-topology on the set of probability measures 
on an abstract measurable space and the ws-topology on the set of probability measures on the 
product of a measurable space and a topological space.

Definition 2 Let （ ） be a measurable space.  The strong topology （s-topology for short） on 
 is the coarsest topology for which all functionals , are continuous.  The 

s-topology on  is the subspace topology on , where the latter space 
is endowed with the topology of pointwise convergence （or the product topology）.   
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indicates that  is endowed with the s-topology.

Definition 3 Let （ ） be a measurable space and X a topological space.  The ws-topology on 
 is the coarsest topology for which all functionals , c ∈ b（X） 

（the set of bounded continuous functions on X） are continuous.  As Balder （2001, p. 496） 
remarked, the s-topology is the finest topology on  for which the marginal projection Pr : 

 is continuous.

　 In what follows, we assume that （Ti× Ai） and （T× A） are given the ws-topology 
and （Ti） and （T） the s-topology.
　 We restate the main theorem in Noguchi （2021） below.

Theorem 4 Under Assumptions （A.1）-（A.5）, there is a dense residual Q of  such that 
every （u, （k, ）） ∈ Q is essential relative to .
　 （A.1） For each i ∈ N, Ai is a compact metric space and a convex subset in a linear space.
　 （A.2） For each i ∈ N, i consists of nonatomic probability measures.
　 （A.3） For each u＝（u1, …, un） ∈ , each ui is a bounded continuous concave integrand.
　 （A.4） For each i ∈ N, Ti is a separable measurable space, namely a measurable space with a 
countably generated σ-algebra.
　 （A.5）  is compact in .
　 Some remarks are in order.  A dense residual Q is the complement of a topologically 
negligible set in , and （Ti） is an exogenously given set of nonatomic marginal 
measures , constituting the information structures （k, ）.
　 Noguchi （2021） proves the above theorem in the following three steps:
　 （Step 1）  is a complete metric space.
　 （Step 2）  admits a metric topology; with the metric topology,  is 
compact, where Pri : （T×A）→ （Ti） is the marginal projection map onto Ti .
　 （Step 3）  is upper semi-continuous, where  is compact 
from （Step 2）.  We prove this by showing that  is closed, that is, the graph of  is closed.
　 The present paper concerns the part in （Step 3） that verifies the graph of  as closed.  For 
each （u,（k, ）） ∈  and  ⊂ N, we define （u,（k, ）） to be the set of all strategy profiles 

 that cannot be blocked by .  Then since （u,（k, ）） ＝
N
 （u,（k, ））, it suffices to show 

that the graph of  is closed.
　 The defining equation for  involves an extended expected payoff function 

 defined by
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where  is the obvious product transition probability.  As 
demonstrated by Noguchi （2021）, if  is continuous, then the graph of  is closed.  It is clear 
from the definition of  that the following proposition in Noguchi （2021） plays a crucial role 
in showing that  is continuous.  The proof relies on a variant of the implication （i） ⇒ （iii） in　
Theorem 2.6 in Gänssler （p. 130, 1971）, which the present paper focuses on.

Proposition 5 Let  Then,  defines a continuous 
mapping from .

　 The proof proceeds as follows.  Without loss of generality, we assume n＝2.  We first show 
that if , then

 for each measurable rectangle V1×V2 ∈ 
 and each c in the set of continuous functions （A1×A2）, which follows from an argument 

similar to that of Theorem 2.5 in Balder （1988, p. 271）.  We then extend the above convergence 
on the set of measurable rectangles V1×V2 ∈  to the entire  to complete the proof.  
For V, V1×V2 ∈ , we have

Gänssler’s theorem in the present context ensures that there exists a （T1×T2） such 
that  , choose any 
V 1×V 2  a n d   s u c h  t h a t   
and if , choose （V1×V2） （see the approximation theorem in Ash, 1972, p. 20） 
s u c h  t h a t   a s  a b o v e , 

  We then have

for all .  Further, choose  such that
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3　Gänssler’s Theorem

Having understood the importance of the implication （i） ⇒ （iii） in Theorem 2.6 in Gänssler （p. 
130, 1971）, we examine the original proof, which is sketchy and leaves out details, to see if a self-
contained and, more straightforward proof can be obtained, taking advantage of dealing only 
with probability measures instead of a general class of measures as in Gänssler （1971）.
　 In what follows, for a measurable space （ ）, （ ） denotes the set of signed measures 
and （ ） the set of nonnegative measures.  We define a notion of uniform, absolute 
continuity of a family of measures as follows.  The s-topology can be defined as well for these 
spaces as the topology of set-wise convergence.

Definition 6 Let （ ） be a measurable space, and let （ ）.  We say （ ） 
uniformly dominates  iff  .

Remark 7 The implication （i） ⇒ （iii） in Theorem 2.6 in Gänssler （p. 130, 1971） asserts that if 
a subset  is conditionally compact, there exists a （ ） that uniformly 
dominates .  Since  is closed in , if  is conditionally compact in 

, then the same holds for , and thus there is a  that 
uniformly dominates .  By normalizing the above , we obtained a  that 
uniformly dominates .  Recall that  is assumed to be compact in  （A.5） and thus is 
conditionally compact.  As mentioned earlier, this is precisely the property needed to prove that  

 is continuous, where  for all .

　 For a measurable space （ ）, ba（ ） denotes the set of bounded additive set functions on 
, and （ ） the set of probability measures on .

Lemma 8 Let （ ） be a measurable space and let  :  be a bounded measurable function.  
The  is a uniform limit of simple functions.

Proof.  （ ）⊂  is a separable metric space and is totally bounded.  The claim follows from 
Vakhania et al.  （1987, p. 12）. ■
　 Let B（ ） be the set of uniform limits of simple functions defined for algebras as in Dunford 
and Schwartz （1958, p. 240）.  Since our  is a σ-algebra, B（ ） is simply the set of bounded 
measurable functions on .

Lemma 9 （ ） ⊂ ba（ ）＝B（ ）＊, where ba（ ） is endowed with the total variation 
norm and B（ ）＊ denotes the Banach space dual of B（ ）.
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Proof.  Theorem 1 in Dunford and Schwartz （1958, p. 258）. ■

Definition 10 For an algebra  on ,  denotes the topology of pointwise convergence （the 
product topology） on .  For a measurable space （ ）, since （ ） ⊂ ,  
induces a subspace topology, called the s-topology on （ ）.  We denote （ ） with 
the s-topology by .

Lemma 11  ＝ , where weak* elenotes the weals star topology.

Proof.  Let f ∈ B  and let  in .  Approximate  by a simple .  Then

which impl ies  and hence 
.  Consequently, the claim holds in light of Lemma 9. ■

Lemma 12 （Gänssler, 1971, Lemma 1.15, p. 127） Let X0 ⊂ X ⊂ Y be topological spaces, where 
Y is compact Hausdorff.  Then X0 is conditionally compact in X iff clY X0 ⊂ X.

Proof.  Suppose X0 is conditionally compact in X.  Then  a compact C ⊂ X s.t.  X0 ⊂ C ⊂ X.  
Then C is compact in Y and hence closed in Y.  Thus clY X0 ⊂ C ⊂ X.  Conversely, if clY X0 ⊂ X, 
clY X0 is compact in X since clY X0 is compact in Y, and hence, X0 is conditionally compact in X. ■

Lemma 13 （Gänssler, 1971, Lemma 1.19, p. 127） Let  ⊂  be topologies on X, where  is 
Hausdorff.  Let X0 ⊂ X.  For a topology  on X, X0 denotes the closure of X0 with respect to 
.  If a subset X0 of X is conditionally compact in （ ）, then X0 is also conditionally compact 
in （ ） and X0 ＝ X0.  Furthermore,  ＝  on X0 .

Proof.  Suppose X0 is conditionally compact in （ ）.  Then since the identity map （ ）→
（ ） is continuous, X0 is conditionally compact in （ ）.  Further, since X0 is closed in 
（ ）, we have X0 ⊂ X0, and since X0 is compact in （ ）, it is compact in （ ） 
and hence closed.  Thus, the other inclusion X0 ⊂ X0 holds as well.  Note that X0 →

X0 is a homeomorphism. ■
　 For a family of subsets  of ,  denotes the smallest σ-algebra containing .  Let （ ） 
be a measurable space and  a sub-σ-algebra of .

Lemma 14 Let  be an algebra s.t.   ＝  be the restriction map 
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defined by .  Then  is an injection, and

defines a Hausdorff topology on （ ）.   is the coarsest topology on （ ） with 
the property that  is continuous and hence that  in （ ） with  iff .  
We also have  ⊂ the s-topology.

Proof.  Since  is a Hausdorff space, the unique extension theorem （Dunford and Schwartz,
1958, Corollary 9, p. 136） implies that  is a continuous injection. ■
　 Let  be a subset of （ ）.  When  is a sub-algebra of ,  denotes the obvious 
restriction.

Lemma 15 Suppose  is conditionally compact in , and let  ⊂ .  Then 
 defined by （E）＝ lim supn （E） for all  is a member of  and 

 in .

Proof.  Since  is Hausdorff （Lemma 14）,  ⊂ the s-topology on  （ ）, and  is 
conditionally compact in , Lemma 13 implies that  and that  
is the s-topology on .  Define  by （E）＝ lim supn （E） for all .  
Then since  is conditionally compact in , Lemma 12 implies that 

, where .  Since limn （E） 
＝ （E） for all , we have  in  with , and hence  
in  with the s-topology.  Thus  in  as desired. ■

Remark 16 Lemma 15 is comparable to Corollary 2.4 in Gänssler （1971, p. 129）.  Since we work 
with the set of countably additive set functions, , whereas Gänssler works with 
ca  , we can take advantage of the inclusion , which significantly 
simplifies the proof, leading to a stronger conclusion that  is a member of .

Proposition 17 If  is conditionally compact in  then  is conditionally sequentially 
compact in , that is, every sequence in  has a convergent subsequence with a limit 
in .

Proof.  Let  be a sequence.  Define  by .  Then each  is 
-continuous.  Let  be the Radon-Nikodým derivative of , where we denote a 
representative of  by the same symbol.  Consider .  Then , 
where  is the i-th projection.  Note that  is countably generated 
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s i n c e   i s .  Fu r t h e r ,  - m e a s u r a b l e  f o r  e a c h i   N .  De n o t e 
.  Since ,  d e f i n e d by ,  i s 

continuous,  is conditionally compact in .  Let R be a countable generator of , 
which may be assumed to be a sub-algebra of .  Then, by the diagonal process, we find a 
subsequence, denoted by  as before, which is convergent on R , that is, satisfies 

 for each , where  is defined as in Lemma 15.  Then by 
Lemma 15,  in .  Let  and .  Then

where  is the conditional expectation operator.  Letting 
 we obtain

for each .  Observe that , which can be seen as follows.  Since 1  is 
-measurable and , we have   By Lemma 11 

we have , and since  in  as shown above, 
 is convergent for each .  Then by Corollary 4 in Dunford and Schwartz （1958, p. 160）, 

, , defines a measure on , which is a member of . ■

Remark 18 If also  is s-closed, , and hence  is sequentially compact.

Remark 19 If  is Suslin compact, it is metrizable and hence is sequentially compact.  See 
Schwartz （1973, Corollary 2, p. 106）.
　 The idea of the following proof is taken partly from the proof of Theorem 2 in Dunford and 
Schwartz （1958, p. 306） and Theorem 2.6 in Gänssler （1971, p. 130）.  We reiterate them in a 
simple, streamlined manner to be as self-contained as possible.

Theorem 20 If  is conditionally compact in  then  is uniformly dominated by some  
, that is,  .

Proof.  We will find a  that dominates , that is, .  
  and argue that it, in fact, uniformly dominates .  We first 
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claim that  .  Suppose 
the claim is false.  Then  s.t.

 and  s.t.

and by continuing in this manner, we find a sequence  s.t.

Since  is conditionally sequentially compact in  （Proposition 17）, there exists a 
subsequence of , which we will denote by  as before, such that .  
Define .  Then each  is -continuous.  Since  exists 
for each , the Vitali-Hahn-Saks theorem （Dunford and Schwartz, 1958, p. 158） implies that 

 uniformly in m, that is,  .  Then 
since

choose N s.t.  .  Then , that is, , which 
contradicts  since .  Thus for each n, we can find

 and  .   Since

, where , we obtain .

Define  by normalizing .  If  then for each n, we have

 ＝ 0 for each i ＝ 1, … , mn and hence .  Thus if  ＝ 0 then 
 ＝ 0, which confirms that  dominates .  Now, suppose  does not uniformly 

dominate .  Then  and .  Since  is 
conditionally sequentially compact in ,  has a convergent subsequence  
in .  Then, using the Vitali-Hahn-Saks theorem （Dunford and Schwartz, 1958, p. 
158）, we deduce that , that is,   .  
Choose I s.t.  .  Then  , which is impossible since 

. ■

Remark 21 The last part of the proof shows that if  is conditionally sequentially compact in 
 then
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Remark 22 Let  be the set of countably additive R-valued set functions on , 
where  is a σ-algebra on .  Let  be nonnegative and .  According to 
Gänssler （1971）,  is said to be dominated by  if
　 （i）  , which is equivalent to
　 （ii） 
　 The above equivalence follows from Lemma 13 in Dunford and Schwartz （1958, p. 131）.  
These statements have the following equivalent expressions:
　 （iii） 
　 （iv） , 
　 Moreover, the following statements are equivalent:
　 （i）  .
　 （ii） 

4　Further development

Regarding condition （A.5）, which states that  is compact in , 
Noguchi （2021） remarked that it is more stringent than demanding each  to be compact in 

, while the compactness of  implies that of  since the marginal projection  is 
continuous and surjective.  Proving the converse to the above statement was posed in Noguchi 
（2021） to be addressed in future research.  In this section, we will demonstrate that with （A.4）, 
which requires each σ-algebra  to be countably generated, if each  is compact in  
then  is metrizable, which will bring us one step closer to solving the above problem.

Theorem 23 （Kuratowski, 1968, p. 22） Let  be a compact metric space and  be a Hausdorff 
topological space such that  for some continuous map .  Then  is metrizable.

Proof.  Since  is regular （even normal）, it suffices to show that the topology  of  has a 
countable basis.  Let B1, B2 … be a countable basis for the topology of , and let W1, W2, … 
be finite unions of B1, B2 … .  Let .  We wish to find Wn such that  
to show that , 2 , … form a basis for .  To this end, we find Wn such that 

 and .  Then 
 a n d  

. ■
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Proposition 24 Let  be a measurable space with a countably generated σ-algebra , and 
let  be a conditionally compact subset.  Then  is metrizable.

Proof.  Let  be a compact subset such that .  Let A be a compact metric 
space, and Pr :  be the marginal projection map onto .  
Proposition 2.3 in Balder （2001, p. 500） ensures that  is 
metrizable, and Theorem 2.5 （p. 505） implies that  is 
compact as well.  Theorem 23 yields our conclusion. ■
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