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Abstract.

This paper discusses the possibiliy of extending the classical Farkas-Minkowski’s lemma
 

and Stiemke’s lemma to infinite dimensional spaces.We show that the former is a simple
 

consequence of the well-known bipolar theorem in the theory of topological vector space,and
 

the later can be accomplished with some restrictions,which are mild enough to include the
 

spaces of certain economic significance such as R×L (M , ,μ).Consequently,in the incomplete
 

pure financial markets with dividend D taking values in L (M , ,μ),a price-dividend pair (π,

D)is strictly arbitrage-free if and only if there exists a strictly positive continuous linear
 

functionalλ on L (M , ,μ)such that π＝λD.

Introduction.

Since Bewley(1972)established the equilibrium existence theorem for econo-mies with an
 

infinite dimensional commodity space,the theory of general equilibrium in the infinite dimen-

sional context has been extended towards various directions.See Florenzano(1983),Toussaint

(1984),Noguchi (1997),et al.

Recently,yet another extension involving economies with incomplete financial markets was
 

attempted by Zhang (1997). To be more specific, Zhang claims to have proven existence of
 

general equilibrium in a two period economy with infinite dimensional commodity space and
 

with incomplete pure financial markets.His proof relies on infinite dimensional versions of
 

Farkas-Minkowski’s Lemma and Stiemke’s Lemma.Unfortunately,there are some elementary
 

mathematical errors and insufficient arguments in the proofs for establishing the infinite
 

dimensional versions of the two lemmas:for instance,he claims that the relative interior of the
 

standard positive cone of l is non-void,and apparently confuses proper separation with strict
 

separation in the application of the separation theorem.

In this paper,the author shows that a reasonably general infinite dimensional extension of
 

Farkas-Minkowski’s Lemma can be established as a simple consequence of the well-known

21名城論叢 2002年９月

JEL classification:C6.

Key words and phrases. Farkas-Minkowski’s lemma,Stike’s lemma,convex analysis, topological vector
 

space,locally convex space,mathematical finance.



bipolar theorem.This direction is by no means new,and indeed appears in Rochafellar(1970)in
 

the finite dimensional context.We also demonstrate that Stiemke’s Lemma can be extended in
 

some generality to the spaces of certain economic significance such as R×L (M , ,μ).

Definitions and Terminology.

For basic definitions and terminology for the theory of topological vector space,we refer the
 

readers to Horvath (1966), Jameson (1974), Kelley and Namioka (1963), Kothe(1969), and
 

Schaefer (1970). Our definition of topological vector space, t.v.s., in short, does not require
 

Hausdorff property while some authors’do.For a t.v.s.E,E’denotes its topological dual.We
 

follow Schaefer(1970)for the definition of ordered t.v.s.,i.e.,an ordered t.v.s.E is a t.v.s.with
 

a closed proper cone E ,called the positive cone of E.Since E is assumed to be closed,the
 

topology of E is automatically Hausdorff(Jameson,1970,p.80).Let E and F be paired linear
 

spaces with pairing ,> .For each subset A of E,we define the polar A°of A by｛f∈F: f,

x> －1 for all x∈A｝ (Jameson,1970)so that when E is an ordered t.v.s.,we have E°＝E ,

where E is the set of positive continuous linear functionals.Unfortunately,there are several
 

different definitions of polar being used in the current literature,but they all agree on circled
 

subsets,and the difference rarely matters in practice.We rely on the version of bipolar theorem
 

which appeared in Jameson (1970,p.82).R denotes the n-dimensional Euclidean space,where
 

we identify its dual with itself.We write l.c.s. for locally convex topological vector space.

indicates the set theoretic subtraction,Im the image of a map,cl the topological closure of a
 

set in a topological space,and int the topological interior of a set in a topological space.

Farkas-Minkowski’s Lemma.

Recall that we have the following classical version of Farkas-Minkowski’s Lemma:

Lemma 1 (Farkas-Minkowski).

Let D be a real n×m matrix.Then a vector π∈R satisfiesπθ 0 for all θ∈R with Dθ

∈R if and only if there exists a positive vector λ∈R such that π＝λD, where t on the
 

shoulders indicates transpose.

We state the following conjecture,which is a simple generalization of the statement in the
 

above lemma:
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Conjecture 1.

Let S and T be t.v.s.(not necessary Hausdorff)with topological dual S’and T’,respectively.

Let C⊂T be a non-empty subset with polar C°⊂T’.Let D be a weakly continuous linear map
 

from S into T with dual D’.Note that D’is defined and weakly continuous.For this fact, see,

for example,Kelley and Namioka (1963,p.199). Then π∈S’satisfies π,θ> －1 for all θ∈S
 

with Dθ∈C if and only if there exists λ∈C°such that π＝D’λ.

Note that the statement in the above conjecture clearly reduces to the classical finite
 

dimensional version when S＝R ,T＝R ,and C＝R .

We can restate the above conjecture in yet another equivalent form,given in terms of polar.

Conjecture 1’.

Under the same hypotheses in Conjecture 1,we have

［D (C)］°＝D’(C°). ( )

We verify the equivalence mentioned above.Observe that the inclusion D’(C°)⊂［D (C)］°

is a simple consequence of the definition of polar.To see this,letπ∈D’(C°).Thenπ＝D’λfor
 

someλ∈C°.Letθ∈D (C).Then Dθ∈C,and hence－1 λ,Dθ>＝ D’λ,θ>＝ π,θ> .Thus

π∈［D (C)］°,and D’(C°)⊂［D (C)］°.Observe thatπ∈［D (C)］°if and only if π,θ> －

1 for allθ∈D (C),i.e.,for allθsuch that Dθ∈ C.We also note that π∈D’(C°)if and only
 

if there existsλ∈C°such that π＝D’λ.These establish our claim.

We prove the following lemma:

Lemma 2.

Let C⊂T be a non-empty weakly closed,convex subset containing zero.Then D (C)＝［D’

(C°)］°.

Proof for Lemma 2.

D (C)＝D (C°°)

＝｛θ∈S: λ,Dθ> －1∀λ∈C°｝

＝｛θ∈S: D’λ,θ> －1∀λ∈C°｝

＝［D’(C°)］°.

□

Thus,for C⊂T a non-empty weakly closed,convex subset containing zero,( )becomes
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［D’(C°)］°°＝D’(C°).

We are ready to prove the following theorem:

Theorem 1 (Generalized Farkas-Minkowski’s Lemma).

Let S and T be t.v.s. with dual S’and T’, respectively. Let C⊂T be a non-empty weakly
 

closed,convex subset containing zero.Let D be a weakly continuous linear map from S into T
 

with dual D’. If D and D’have a weakly closed range, then［D’(C°)］°°＝D’(C°).

Proof for Theorem 1. Since D’(C°)⊂S’is a non-empty convex subset containing zero, it
 

suffices to show that D’(C°)is weakly closed.To this end,note that since the range of D is
 

assumed to be weakly closed, D’is a weakly relatively open map. For this fact, see, for
 

example,Kelley-Namioka (1963,p.199).Since the range of D’is also assumed to be weakly
 

closed,it is,in fact,a weakly closed map,and our claim follows at once.□

Corollary 1.

Let S and T be l.c.s. with dual S’and T’, respectively. Let C⊂T be a non-empty closed,

convex subset containing zero. Let D be a weakly continuous linear map from S into T with
 

dual D’. If D and D’have a closed range, then［D’(C°)］°°＝D’(C°).

Proof for Corollary 1. A simple consequence of Kelley and Namioka (1963,p.154)□

Corollary 2.

Let T be an ordered l.c.s. with positive cone T . Let D be a linear map from R into T.

Thenπ∈R satisfies π,θ> 0 for allθ∈R with Dθ∈T if and only if there exists a positive
 

continuous linear functional λ∈T’such that π＝λD.

Proof for Corollary 2.Observe that D is weakly continuous(Schaefer,1970,p.22),and since the
 

weak topology on T is Hausdorff,the range of D,being finite dimensional,is weakly closed

(Kelley and Namioka,1963,p.59).Our claim follows at once from Corollary 1.□

Definition 1.

Let π∈R denote the vector of prices of n securities.The securities’price-dividend pair (π,

D)is weakly arbitrage-free if any portfolioθ∈R of securities has positive market value π,θ>

0 whenever it has a positive pay-off, or Dθ∈T .
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Corollary 3.

Let T be an ordered l.c.s.with positive cone T .Then a price-dividend pair (π,D)is weakly
 

arbitrage-free if and only if there exists a positive continuous linear functionalλ∈T’such that

π＝λD.

Proof for Corollary 3.This follows at once from Corollary 2.□

Stiemke’s Lemma.

Definition 2.

Let π∈R denote the vector of prices of n securities.The securities’price-dividend pair (π,

D)is strictly arbitrage-free if there does not exist a portfolio θ∈R satisfying (－πθ,Dθ)∈R

(0)×T (0).It follows that (π,D)is strictly arbitrage-free if and only if it is weakly arbitrage-free
 

and any portfolioθ∈R of securities has strictly positive market value π,θ> ＞ 0 whenever it
 

has a strictly positive pay off, or Dθ∈T (0).

For T＝R with the standard positive cone R , it is well known that (π,D) is strictly
 

arbitrage-free if and only if there exists a strictly positive vector λ∈R such that π＝λD.

Thus,one may be tempted to conjecture that an analogous statement holds for an arbitrary l.

c.s..To be more precise,such an statement would be as follows:

Let T be an ordered l.c.s.with positive cone T .Then a price-dividend pair (π,D)is strictly
 

arbitrage-free if and only if there exists a strictly positive continuous linear functional λ∈T’

such that π＝λD.

However,this seemingly plausible statement turns out not to hold for all ordered l.c.s.,as
 

the following simple example demonstrates:consider the case where n＝1,T＝ the set of real
 

sequences with the product topology,T ＝ the standard positive cone,Dθ＝(θ,0,0,0,…),andπ＝

1∈R.Note that Dθ∈T if and only ifθ 0 if and only ifπθ 0,and that Dθ∈T (0)implies

θ＝πθ＞ 0.Thus,(π,D)is clearly strictly arbitrage-free,and should the statement hold in this
 

case, there must be a strictly positive continuous linear functional λ∈T’such that π＝λD.

However,there does not exist any strictly positive linear functional in the algebraic dual of T

(Jameson,1970,p.34).

This example indicates that the above statement does not hold in full generality and we
 

must restrict the class of ordered l.c.s.T at least to those with positive cone T with a base

(Jameson,1970,p.34),or equivalently,to those whose algebraic dual admits a strictly positive
 

linear functional.
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To proceed further,we need the following lemma:

Lemma 3.

Let S be a t.v.s.,and T be a locally bounded (Kothe,1969,p.159),ordered l.c.s.with positive
 

cone T . Let D be a linear map from S into T. Let Im D possess the property that every
 

bounded sequence admits a convergent subsequence,and let T be well-based (Jameson,1970,p.

120).If Im D∩T ＝(0), there exists a convex cone C such that T (0)⊂ int C and Im D∩ int
 

C＝ .

Proof for Lemma 3.Since T is locally bounded and locally convex,it has a neighborhood filter
 

base at 0 of the formβ＝｛σU:σ＞0｝,where U is a bounded convex neighborhood of 0.Let
 

B be a bounded base for T such that 0 cl B (Jameson,1970,p.120).We claim that

 

Im D∩(B＋σU)＝ ( )

for someσ＞0.To this end,suppose there is noσ＞0 satisfying ( ).Then we can choose a
 

decreasing sequence of positive real numbersσ ↓ 0 in such a way that there is a sequence of
 

points x in Im D∩(B＋σ U).Since x∈B＋σ U⊂B＋σ U,x is a bounded sequence in Im
 

D.By our hypotheses,x admits a subsequence,which is also denoted by x ,convergent to some
 

x Im D.On the other hand,we have x－σu∈B for some sequence u∈U.Observe that σ

u → 0.This fact can be seen as follows:given any neighborhood baseσU of 0, choose a
 

number n such that for all n n ,we haveσ U⊂σU.Sinceσu∈σ U,the result follows.

Since T is closed and 0 cl B,we have(x－σu )→ x∈cl B∈T (0),and this contradicts
 

the fact that Im D∩T ＝(0).

Define C＝∪
u 0

μ(B＋σU).We show that C has all the desired properties. Since B is, by
 

definition,convex,B＋σU is also convex.Consequently,C is a convex cone.Let y∈T (0).

Then y＝tb for some t＞0 and b∈B.Observe that tb∈t(b＋σint U),and that t(b＋σint U)

is an open neighborhood of y＝tb contained in C.Thus,y is an interior point of C.This shows
 

T (0)⊂ int C.

We next show that Im D∩int C＝ .To this end, let z∈Im D∩C. If z≠0,z∈Im D∩

μ(B＋σU)for someμ＞0.Thenμ z∈Im D∩(B＋σU),which contradicts to( ).Thus Im
 

D∩C＝(0).Since 0 (B＋σU),0 is not an interior point of C.Consequently,Im D∩int C＝

.□

Theorem 2 (Generalized Stiemke’s Lemma).

Let S be a t.v.s.,and T be a locally bounded,ordered l.c.s.with positive cone T .Let D be a linear
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map from S into T. If Im D possesses the property that every bounded sequence admits a convergent
 

subsequence, and if T is well-based, then one and only one of the following statements is correct: (a)

There exists a solution θ∈ S to D θ∈ T (0).(b)There exists a strictly positive continuous linear
 

functional λ∈ T’such that λD＝0.

Proof for Theorem 2.We assume that both (a)and (b)do not hold,and reach a contradiction.

Then,since(a)and (b)cannot hold simultaneously,we establish our claim.Note that we have
 

Im D∩ T ＝(0),and hence,we can apply Lemma 3.By the standard separation argument,there
 

existsλ∈ T’such thatλ(x) a for all x∈Im D,and a λ(x)for all x∈ C.Since 0∈ C
 

and 0∈ Im D,we have a＝0 and 0 λ(x)for all x∈ C.We claim that 0＜ λ(x)for all x∈

int C. This can be seen as follows:suppose λ(y)＝0 for some y∈ int C. Choose a circled
 

neighborhood V of 0 such that y＋V ⊂ C. Sinceλmaps an open subset onto an open subset
 

of R (Schaefer,1970,p.75),λcannot be identically zero on y＋V.Thus,there exists a point z

∈ V such that λ(y＋z)≠0.We may assumeλ(y＋z)＝λ(z)＞ 0.Then λ(y－z)＝－λ(z)＜ 0.

However,y－z ∈ y－V＝y＋V ⊂ C.This is a contradiction.

We have obtained thatλ(x)＞ 0 for all x int C,and hence for all x∈ T (0).This shows that

λis a strictly positive continuous linear functional such thatλ(x) 0 for all x∈ Im D.Since
 

Im D is a linear subspace,we haveλ(x)＝0 for all x∈ Im D,orλD＝0.But the last assertion
 

is nothing but (b).□

Corollary 3.

Let T be a locally bounded,ordered l.c.s.with positive cone T .Let (π,D)be a price-dividend
 

pair.If T is well-based,(π,D)is strictly arbitrage-free if and only if there exist a strictly positive
 

continuous linear functional λ∈ T’such that π＝λD.

Proof for Corollary 3. Define A :R → R×T by A＝(－π,D).Note that R×T is a locally
 

bounded, ordered l.c.s. with positive cone R ×T . Since R×T is Hausdorff, Im A is
 

topologically isomorphic to a finite dimensional Euclidean space(Kelley-Namioka,1963,p.59)

and therefore has the property that every bounded sequence admits a convergent subsequence.

We show that R T is well-based.To this end,consider B̃＝ the convex hull of (1,0),0×

B .We claim that B̃ is a bounded base for R ×T such that (0,0) clB̃.Let (t,x)∈ R (0)×

T (0).Then x＝vb for some b ∈ B and a unique positive number v .Thus,(t＋v ) (t,x)＝

(t＋v ) t(1,0)＋(t＋v ) v (0,b )∈ B̃,and this shows that B̃ is a base.Since B is bounded,B̃ is
 

clearly bounded.Suppose(0,0)∈ clB̃.We can choose a net (t ,x)∈ B̃ such that (t ,x)→ (0,0).

Note that (t ,x)＝α(1,0)＋(1－α)(0,b )for some b ∈ B and 0 α 1.Hence,we have b＝

(1－t ) x → 0,which is a contradiction since 0 clB.

We are in a situation,where our version of Stiemke’s Lemma can be applied. If (π,D)is
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strictly arbitrage-free,Aθ＝(－πθ,Dθ)∈ R (0)×T (0)has no solutionθ∈ R .ThusγA＝0
 

must have a solution γ∈ (R×T )’＝R×T’, which is a strictly positive continuous linear
 

functional.Note that γ＝γ＋λ for someγ ＞ 0 and λ ∈ T’a strictly positive continuous
 

linear functional.Thus,we can let λ＝γ λ and obtain π＝λD as desired.The converse is
 

trivial.□

Corollary 4
 

Let T be a locally bounded,ordered l.c.s.with positive cone T .Let (π,D)be a price-dividend
 

pair.If the dual cone T°⊂ T’admits an interior point with respect to the strong topologyβ(T’,

T),(π,D) is strictly arbitrage-free if and only if there exist a strictly positive continuous linear
 

functional λ∈ T’such that π＝λD.

Proof for Corollary 4.A simple consequence of Corollary 3 and Theorem 3.8.4 in Jameson(1970,

p.122).□

Corollary 4 holds for T＝L (M , ,μ)with the standard positive cone,where M is a state
 

space,M is aσ-algebra of subsets of M ,andμis aσ-finite measure on M.This follows from
 

the fact that β(L (M, ,μ),L (M, ,μ)) coincides with the norm topology and L (M, ,μ)

admits an interior point with respect to the norm topology.
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